151. Synthesis and Formation of Ironcarbonyl Complexes of $\mathbf{3}^{\prime}, \mathbf{3}^{\prime}$-Dimethyl-2,3,5,6-tetramethylidenespiro[bicyclo[2.2.1]heptane-7,2'oxirane]. Single-Crystal and Molecular Structure of syn, exo ${ }^{2,3}$-anti,endo ${ }^{5,6}$-trans- $\mu-[(1 R, 2 R, 3 S, 4 S, 5 S, 6 R)-C, 2,3, C-\eta: C, 5,6, C-\eta-$ ($3^{\prime}, 3^{\prime}$-Dimethyl-2,3,5,6-tetramethylidenespiro[bicyclo[2.2.1]heptane-7, 2^{\prime} oxirane])]bis(tricarbonyliron) ${ }^{1}$)

by Albino Rubello ${ }^{2}$) and Pierre Vogel*
Institut de chimie organique de l'Université de Lausanne, 2, rue de la Barre, CH-1005 Lausanne
and Gervais Chapuis
Institut de Cristallographie, Bâtiment de Sciences Physique, Université de Lausanne,
CH-1005 Lausanne-Dorigny

(17.VII. 87)

The $3^{\prime}, 3^{\prime}$-dimethyl-2,3,5,6-tetramethylidenespiro[bicyclo[2.2.1]heptane-7, 2^{\prime}-oxirane] (3) was derived from 6,6dimethylfulvene and maleic anhydride. Its reaction with 1 equiv. of ethylenetetracarbonitrile (TCNE) was not regioselective and gave a $1: 1$ mixture of the corresponding monoadducts 10 and 11 . The rate constants of the Diels-Alder additions of $\mathbf{1 0}$ and $\mathbf{1 1}$ to TCNE were significantly smaller than that of the reaction $3+$ TCNE. Monocomplexation of 3 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ was highly exo-face selective giving a mixture of the corresponding monocomplexes 12 (anti-exo) and 13 (syn-exo). The latter were complexed with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in a non-stereoselective fashion, giving mixtures of the dicomplexes 14 (anti-exo, syn-endo), 15 (anti-exo, syn-exo), and 16 (anti-endo, synexo). Exchange of the CO ligands was a faster process for the endo $-\mathrm{Fe}(\mathrm{CO})_{3}$ moieties than for the exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties. Line-shape analysis of the ${ }^{13} \mathrm{C}$-NMR spectrum of 15 established that one of the exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ groups in 15 rotates ca. 3 times as fast as the other $\mathrm{Fe}(\mathrm{CO})_{3}$ group at 40°. The structure of the anti-endo, syn-exo dicomplex 16 was determined by single-crystal X-ray diffraction studies.

Introduction. - The chemical and spectroscopic properties of the diene in 2,3-dimeth-ylidene- and 2,3,5,6-tetramethylidenebicyclo[2.2.n]alkanes can be affected by remote substitution of the bicyclic skeleton [2]. In particular, we have shown recently that an acetal function attached at one of the bridgehead centres of 2,3,5,6-tetramethylidene-7oxabicyclo[2.2.1]heptane (1) can induce stereo- and regioselective reactions for the two successive Diels-Alder additions to non-symmetrical dienophiles [3]. In the case of the 7,8-epoxy-2,3,5,6-tetramethylidenebicyclo[2.2.2]octane (2), we had shown that the epoxide moiety led to a differentiation of the Diels-Alder reactivity of the two diene moieties. We found that ethylenetetracarbonitrile (TCNE) prefers to add onto the diene syn with respect to the oxirane [4]. We now report on the synthesis of a new type of epoxy-tetraene 3. In the latter, the oxirane ring is in the mirror plane of the tetraene, a relative orientation which is perpendicular to that of the epoxide in 2 . We shall present our preliminary studies on the Diels-Alder reactivity of $\mathbf{3}$ and on its complexation with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$. We have

[^0]
$1 \mathrm{R}=\mathrm{CH}(\mathrm{OMe})_{2}$
$19 \mathrm{R}=\mathrm{H}$

2

3
found that monocomplexation of $\mathbf{3}$ prefers the exo face of both diene moieties. This stereoselectivity was not observed for the double complexations of the tetraene.

Results and Discussion. - Our starting material for the synthesis of $\mathbf{3}$ is the tetrachloride 5, a precursor of 7,7-dimethyl[2.2.1]hericene (4) [5]. It was derived in four steps from 6,6 -dimethylfulvene and maleic anhydride. On attempting to prepare the corresponding ketone 6 by ozonolysis of 5 , we found that only the epoxide 7 was formed in 92% isolated yield. The same product was also obtained on oxidizing 5 with m-chloroperbenzoic acid in CHCl_{3}. A survey of the literature shows that ozonolysis of polysubstituted or/and sterically hindered alkenes can yield the corresponding epoxides instead of the expected ketone [6].

4

$5 \mathrm{Z}=\mathrm{C}=\mathrm{CMe}{ }_{2}$
$6 \mathrm{Z}=\mathrm{C}=0$

7

8

On treatment of 7 with an excess of t-BuOK in THF ($70^{\circ}, 5$ equiv.), a mixture of diene 8 and tetraene 3 was formed in low yield. A good yield (69%) of 3 was obtained on heating 7 to 120° for 7 days in DMF/HMPT 6:1 in the presence of a ca. 20-fold excess of anhydrous CsF [7]. When heated to 120° for 2 h only in DMF/HMPT 8:1 in the presence of 1 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 10 equiv. of CsF , incomplete elimination of HCl was observed and the diene 8 was isolated in 48% yield. Unfortunately, the configuration at $\mathrm{C}(7)$ in 8 could not be established unambiguously. It is interesting to note, however, that only one of the two possible conjugated dienes that can be formed from 7 has been isolated.

The structure of $\mathbf{3}$ was established unambiguously from its mode of formation, by its elemental analysis, and by its spectral data (see Exper. Part). It was confirmed by its Diels-Alder addition to TCNE. In the presence of 2 equiv. of the dienophile (acetone, 20°, 12 h), the corresponding bis-adduct 9 was formed (91%, isolated). When only 1 equiv. of TCNE was used, a 55:45 or $45: 55$ mixture of the mono-adducts $\mathbf{1 0}$ and 11 was obtained. Contrary to the cycloaddition of the epoxy-tetraene 2 to TCNE which was shown to prefer the diene unit syn with respect to the epoxide ring, the reaction $3+$ TCNE was not regioselective. This indicates the absence of homoconjugative interactions between the epoxide and the tetraene moieties which were invoked to interprete the Diels-Alder reactivity of 2 [4]. Indeed, an eventual HOMO('anti'-diene) - LUMO(epoxide) as that invoked in 2 [4] cannot intervene in $\mathbf{3}$ for reasons of symmetry. There was no trace of $\mathbf{9}$ in the reaction of 3 with 1 equiv. or less of TCNE, thus showing that the rate constant of the
addition of the 1st equiv. of dienophile is significantly larger than that of the addition of the 2nd equiv. This property is typical of all the exocyclic tetraenes grafted onto bicyclo[2.2.1]heptane skeletons reported so far [2] [5] [8].

On heating 3 in MeOH in the presence of 12 equiv. of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$, a $8: 7$ mixture of the monocomplexes 12 (anti-exo) and $\mathbf{1 3}$ (syn-exo) was formed after 1 h (15% of conversion of 3$)^{3}$). After 2.5 h at 65°, a $3: 2.5: 1.5: 1: 1.5$ mixture $\mathbf{1 2} / \mathbf{1 3} / \mathbf{1 4} / \mathbf{1 5} / \mathbf{1 6}$ was observed (35% of conversion). On further heating, the monocomplexes $\mathbf{1 2}$ and $\mathbf{1 3}$ disappeared in favour of the dicomplexes 14-16. When pure 13 was heated with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in MeOH , a $2: 1$ mixture $15 / 16$ was formed, with no trace of 14 . Similarly, when pure 12 was treated with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$, a $1: 1$ mixture $\mathbf{1 4} / \mathbf{1 5}$ was obtained, with no trace of $\mathbf{1 6}$. We could not detect the formation

12

13

14 M

15

16

$$
\mathrm{M}=\mathrm{Fe}(\mathrm{CO})_{3}
$$

of monocomplexes $\mathbf{1 7}$ (anti-endo) and $\mathbf{1 8}$ (syn-endo) with the $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety in the endo face of the diene units. Thus, the monocomplexation of 3 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in MeOH appears to be exo-face-selective, both diene moieties being complexed with similar rates ${ }^{4}$). In the light of this observation, competitive formation of 15 with 16 on treating 13 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and of $\mathbf{1 4}$ with $\mathbf{1 5}$ on treating $\mathbf{1 2}$ with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ is a surprise. We do not have yet an explanation to offer to explain the exo-face selectivity for the monocomplexation of 3 while there is no such selectivity for the coordination of the second $\mathrm{Fe}(\mathrm{CO})_{3}$ units. It should be noted here that the pure complexes 12-16 were stable after prolonged heating in MeOH . The proportions of complexes $\mathbf{1 2 - 1 6}$ formed under the above conditions correspond to those of kinetic control.

The structures of $12-16$ were given by their mode of formation, their elemental analysis and their spectral data. The exo configuration of the $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties in the monocomplexes $\mathbf{1 2}$ and $\mathbf{1 3}$ was established by their $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra that

[^1]

17

18

19

$20 M^{\prime}$
$\mathrm{M}=\mathrm{Fe}(\mathrm{CO})_{3}$
showed typical long-range coupling constants of $c a .0 .4 \mathrm{~Hz}$ between the bridgehead protons $\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)$ and the protons trans with respect to $\mathrm{C}(2), \mathrm{C}(3)$ of the methylidene group attached to the exo-metal atom. Such long-range coupling was not observed for endo complexes [9]. On coordination of the exocyclic butadiene moiety to $\mathrm{Fe}(\mathrm{CO})_{3}$, the H -atoms of the methylidene group trans with respect to $\mathrm{C}(2), \mathrm{C}(3)$ are bent toward the exo face by $\mathrm{c} a .15^{\circ}$, thus making them almost aligned with the adjacent bridgehead $\mathrm{C}-\mathrm{H}$ bonds (M type of ${ }^{4} J(\mathrm{H}, \mathrm{H})$ coupling). In the case of an endo diene- $\mathrm{Fe}(\mathrm{CO})_{3}$ complex, the dihedral angle between these $\mathrm{C}-\mathrm{H}$ bonds is larger than 35°, thus rendering the corresponding ${ }^{4} J(\mathrm{H}, \mathrm{H})$ coupling near zero [10] [14].

The distinction between 12 and 13 was based on their reactivity toward $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ (see above). The energy barrier for the rotation of the $\mathrm{Fe}(\mathrm{CO})_{3}$ tripod in tricarbonyl(diene)iron complexes grafted onto bicyclo[2.2.1]heptane skeletons never exceeds 13 $\mathrm{kcal} / \mathrm{mol}$ [15] which leads to the observation of coalesced signals in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of the $\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{C}$-atoms at 25° (see e.g. [11-13]). Both ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 2}$ and $\mathbf{1 3}$ showed 2 pairs of carbonyl signals at 25°. At $75^{\circ}, \mathbf{1 2}$ was decomposed slowly. At that temperature, the ${ }^{13} \mathrm{C}$-NMR spectrum of 12 showed 2 signals at 213.8 (1 C) and 209.5 ppm (2 C) that had not coalesced yet. Similarly, no coalescence of the 2 carbonyl s at 215.0 (1 C) and $208.9 \mathrm{ppm}\left(2 \mathrm{C}\right.$) could be seen by recording the ${ }^{13} \mathrm{C}$-NMR spectrum of 13 at 85°, temperature at which decomposition of the complex occurred. In that case, the rotation of the exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ tripod is a very slow process because of the bulk of the oxirane ring.

The 'H-NMR spectrum of 15 showed a ${ }^{4} J(\mathrm{H}, \mathrm{H})$ of $c a .0 .4 \mathrm{~Hz}$ between the bridgehead protons $\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)$ and both type of methylidene protons trans with respect to $\mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(5), \mathrm{C}(6)$, thus confirming the exo configuration of both $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties. In contrast, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 4}$ and $\mathbf{1 6}$ showed this long-range coupling constant for only one of the two tricarbonyl(diene)iron moieties. At 25°, the ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 16 showed 2 sharp s at $214.8(1 \mathrm{C})$ and $208.8(2 \mathrm{C}) \mathrm{ppm}$ for the $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties. At $-88^{\circ}, 2$ other s at $215.4(1 \mathrm{C})$ and 209.2 (2 C) ppm were visible. The former pair of signals were attributed to the exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety whereas the latter belong to the endo $-\mathrm{Fe}(\mathrm{CO})_{3}$ unit by virtue of steric hindrance which blocks the rotation of the exo $-\mathrm{Fe}(\mathrm{CO})_{3}$ tripod, but not as much that of the endo- $\mathrm{Fe}(\mathrm{CO})_{3}$ tripod. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 14 measured at 25° (as for 16) showed 2 signals at $213.8(1 \mathrm{C})$ and 209.2 (2 C) ppm. At -88°, the ${ }^{13} \mathrm{C}$-NMR spectrum of 14 displayed another pair of signals at 209.3 (1 C) and $213.8(2 \mathrm{C}) \mathrm{ppm}$ attributed to the more slowly rotating endo $-\mathrm{Fe}(\mathrm{CO})_{3}$ tripod. Distinction between structures 14 and $\mathbf{1 6}$ was established by X-ray single-crystal diffraction studies on 16 (see Exper. Part).

The ${ }^{13} \mathrm{C}$-NMR spectrum of 15 measured at 25° displayed 2 sharp signals at 215.0 (1 C) and 208.7 (2 C) ppm and 2 broader s at $214.0(1 \mathrm{C}$) and 209.4 (2 C) ppm (see Fig. 1). At higher temperatures, line broadening for all 4 signals was observed. Line-shape analysis of these signals allowed one to estimate the rate constans k_{1} and k_{2} for both exchange

Fig. 1. a) Observed and b) simulated $[18]{ }^{13} C$-NMR spectrum of dicomplex 15 (syn-exo, anti-exo) as a function of temperature
processes as a function of temperature. These data showed that one of the $\mathrm{Fe}(\mathrm{CO})_{3}$ tripod is exchanging the CO signals $c a .3$ times as fast as the other at 42° (see Fig. 1). This result suggests, thus, that the bulk of the dimethyl-substituted C -atom of the epoxide moiety does not affect in a significant fashion the rotation rate of the exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ group as compared with the effect of the O -atom in 15.

The ${ }^{13} \mathrm{C}$-NMR chemical shift of the gem-dimethyl groups in 3 is 20.9 ppm . For complexes $\mathbf{1 3}$ and $\mathbf{1 6}$ in which there is no anti-exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ group, the $\delta_{\mathrm{C}}(\mathrm{Me})$ are nearly the same (20.8 ppm for $13,20.8 \mathrm{ppm}$ for 16) as in $\mathbf{3}$. In contrast, for complexes 12, 14, and 15 in which there is an anti-exo- $\mathrm{Fe}(\mathrm{CO})_{3}$ group, a small deshielding effect is

Fig. 2. UV/VIS spectra of monocomplexes 12 and 13 and of dicomplexes 1416 in isooctane

The UV/VIS spectra of 12-16 are reproduced in Fig.2. They are almost featureless. Nevertheless, it is interesting to note that the final absorption at 210 nm of the dicomplexes 14-16 is about the same and is twice as intense as that of the monocomplexes $\mathbf{1 2}$ and 13. More interesting are the absorptions between 300 and 380 nm . While the monocomplexes 12 and 13 and the dicomplexes 14 and 16 have similar intensities in the latter region, that of the dicomplex 15 is definitively higher, showing a maximum at $c a$. 315 nm . This observation suggests a through-space interaction between the two tricarbonyl(diene)iron chromophores in 15 . The latter is possible only in the exo,exo dicomplex 15 and not in the endo,exo dicomplexes 14 and 16. A similar observation had been made by comparing the UV/VIS spectra of the dicomplexes 19 and $2 \mathbf{2 0}^{5}$) [16].

We thank F. Hoffmann-La Roche \& Co. AG, Basel, the Swiss National Science Foundation, and the Fonds Herhette, Lausanne, for generous support.

Experimental Part

General. See [1] [3].
2-cxo.3-exo.5-cxo,6-exo-Tetrakis(chloromethyl) 3', 3'-dimethylspiro[bicyclo[2.2.1]heptane-7,2'-oxirane] (7). Ozone (3%) in $\mathrm{O}_{2}, 1000 \mathrm{~cm}^{3} / \mathrm{min}$, was bubbled through a soln. of $5(2.3 \mathrm{~g}, 6.97 \mathrm{mmol})$ in $\mathrm{AcOEt}(70 \mathrm{ml})$ cooled to -20° for 3 h . After warming to 20°, the solvent was evaporated. The yellowish residue was dried ($\mathrm{P}_{2} \mathrm{O}_{5}$) in vacuo. The crude crystalline 7 was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $2: 1$, yielding $2.2 \mathrm{~g}(92 \%)$ of colourless crystals, slightly hygroscopic. M.p. $75-77^{\circ}$. IR (K Br): 3020, 2970, 2950, 1730, 1445, 1315, 1290, 1260, 1185. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 1.28(s, 2 \mathrm{Me}) ; 2.23(s, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 2.4(m, \mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)) ; 3.5\left(m, 4 \mathrm{CH}_{2} \mathrm{Cl}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 78.4$ (br. $s, \mathrm{C}(7)$); 58.5 (br. $s, \mathrm{C}\left(3^{\prime}\right)$); $49.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=140, \mathrm{C}(5), \mathrm{C}(6)\right) ; 46.1$ (d, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=141, \mathrm{C}(2), \mathrm{C}(3)\right) ; 44.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=146, \mathrm{C}(1), \mathrm{C}(4)\right) ; 43.4,42.6\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=150-152,4 \mathrm{ClCH}_{2}\right) ; 22.3$ $\left(q q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128,{ }^{3} J(\mathrm{C}, \mathrm{H})=3,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{eV}): 346\left(30, M^{+}\right), 331(9), 311(10), 295(58), 267(58), 253(87)$, 237 (23), 219 (34), 203 (I8), 189 (18), 179 (51), 163 (34), 143 (23), 127 (44), 117 (32), 103 (36), 91 (100), 77 (75), 65 (61), 59 (48), 53 (39). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}$ (346.13): C 48.58, H 5.83; found: C 48.49, H 5.79.

2-cxo,3-exo-Bis(chloromethyl)-3',3'-dimethyl-5,6-dimethylidenespiro[bicyclo/2.2.1]heptane-7.2'-oxirane] (8). A mixture of $7(92 \mathrm{mg}, 0.265 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(87 \mathrm{mg}, 0.265 \mathrm{mmol})$, and anh. $\mathrm{CsF}(405 \mathrm{mg}, 2.6 \mathrm{mmol}$; dried in a flame) in DMF/HMPT 8:1 (4.5 ml) was heated to 120° under Ar for 2 h . After cooling to $20^{\circ}, \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ were added. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{ml}, 3$ times). The combined org. extracts were washed with brine ($150 \mathrm{ml}, 5$ times), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue was purified by column chromatography on Florisil (19 g , hexane): 35 mg (48%) of colourless crystals. M.p. $93-95^{\circ}$ (hexane). UV (95% EtOH): 257 (sh, 6040), 248 (9470), 241 (sh, 8180), 229 (sh, 4500). UV (isooctane): 257 (sh, 6250), 248 (9470), 211 (sh, 8180), 228 ($\mathrm{sh}, 4140$). IR $\left(\mathrm{CHCl}_{3}\right): 3060,2950,1280,910 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.33(s, 2 \mathrm{Me}) ; 2.53(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)$, $\mathrm{H}-\mathrm{C}(3)) ; 2.68(s, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 3.78\left(\mathrm{~m}, 2 \mathrm{ClCH}_{2}\right) ; 4.77,5.28\left(2 s, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 146.6(s, \mathrm{C}(5), \mathrm{C}(6)) ; 103.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(5), C \mathrm{H}_{2}=\mathrm{C}(6)\right) ; 79.0(s, \mathrm{C}(7)) ; 58.1\left(s, \mathrm{C}\left(3^{\prime}\right)\right) ; 50.0$ $\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=142, \mathrm{C}(1), \mathrm{C}(4)\right) ; 48.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=142, \mathrm{C}(2), \mathrm{C}(3)\right) ; 43.2\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=154,2 \mathrm{ClCH}_{2}\right) ; 21.2(q d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=126,{ }^{3} J(\mathrm{C}, \mathrm{H})=4,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{eV}): 272\left(5, M^{+\bullet}\right), 237(3), 223(8), 167$ (14), 159 (24), 153 (14), 139 (100), 131 (10), 117 (18), 105 (17), 91 (22), 77 (13), 69 (16). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}$ (272.34): C 61.75, H 6.66 ; found: C 61.43, H 6.39 .
$3^{\prime}, 3^{\prime}$-Dimethyl-2,3,5,6-tetramethylidenespirolbicyclo/ 2.2.1]heptane-7,2'-oxirane] (3). To 7 ($13 \mathrm{~g}, 0.037 \mathrm{~mol}$), DMF (600 ml), and HMPT (100 ml) freshly dried and distilled over CaH_{2}, in a flame-dried flask, $\mathrm{CsF}(100 \mathrm{~g}, 0.65$ mol ; dried in the flame) was added portionwise under stirring. After heating to 120° for 1 week, the mixture was cooled to 20° and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$ added. The soln. was extracted with hexane $/ \mathrm{Et}_{2} \mathrm{O} 2: 1(150 \mathrm{ml}, 4$ times $)$. The org. extracts were washed with brine ($100 \mathrm{ml}, 3$ times), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was purified by flash chromatography ($300 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yielding $5.1 \mathrm{~g}\left(69 \%\right.$) of colourless crystals. M.p. $>250^{\circ}$ (dec.).

[^2]Oxirane 3 is unstable and must be stored below -30°. UV $(95 \% \mathrm{EtOH}): 255$ (sh, 7440), 237 (11300), $230(11900)$, 222 (sh, 9800), 214 (sh, 7250). UV (isooctane): 277 (sh, 5900), 237 (8200), 229 (8960), 222 ($\mathrm{sh}, 7650$), 215 ($\mathrm{sh}, 6210$). IR $\left(\mathrm{CHCl}_{3}\right): 3100,3000,2980,2940,1780,1680,1630.1460,1410,1380 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.38(\mathrm{~s}, 2 \mathrm{Mc}): 3.03(\mathrm{~s}$, $\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 4.93,4.99,5.24,5.31\left(4 s, 4 \mathrm{CH}_{2}=\mathrm{C}\right) .{ }^{13}\left(-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 146.6,145.7(2 \mathrm{~s}, \mathrm{C}(2), \mathrm{C}(3) . \mathrm{C}(5)\right.$. $\mathrm{C}(6)) ; 103.7,102.9\left(2 t,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=160,4\left(\mathrm{H}_{2}=\mathrm{C}\right) ; 799(\mathrm{~s}, \mathrm{C}(7)) ; 62.4\left(\mathrm{~s}, \mathrm{C}\left(3^{\prime}\right)\right) ; 55.8\left(\mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=157, \mathrm{C}(1)\right.\right.$, $\mathrm{C}(4)) ; 20.9\left(\mathrm{~d},{ }^{1} J(\mathrm{C}, \mathrm{H})=138,{ }^{3} /(\mathrm{C}, \mathrm{H})=4,2 \mathrm{Me}\right)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}(200.32): \mathrm{C} .83 .95, \mathrm{H} 8.05$; found: C 83.90, 11 7.99.
 12'. 12^{\prime}-octacarbonitrile (9). A mixture of 9 ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$), TCNE (128 mg .1 mmol), and acetone (5 ml) was stirred at 20° for 12 h . After addition of a few drops of pentane, the mixture was cooled to - 10°. Yield 207 mg (91%), colourless crystals. M.p. $>250^{\circ}$ (dec.). IR (KBr): 3000, 2980, 2920, 1720, 1640, 1440, 1380, 1230, 1220, $1190,1140,1070,980,900,840 .^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 3.85\left(\mathrm{~s}, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \mathrm{H}-\mathrm{C}\left(8^{\prime}\right)\right): 3.77\left(\mathrm{~m}, \mathrm{CH}_{2}\left(3^{\prime}\right), \mathrm{CH}_{2}\left(6^{\prime}\right)\right.$, $\mathrm{CH}_{2}\left(10^{\prime}\right), \mathrm{CH}_{2}\left(13^{\prime}\right)$): $1.27(\mathrm{~s}, 2 \mathrm{Me})$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{O}(456.470)$: $\mathrm{C} 68.41, \mathrm{H} 3.53$; found: $\mathrm{C} 68.58, \mathrm{H} 3.83$.

Tricarbonytion Complexes of 3 . A mixture of $3(2.8 \mathrm{~g}, 14 \mathrm{mmol}), \mathrm{MeOH}(300 \mathrm{ml})$, and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(8 \mathrm{~g}, 24 \mathrm{mmol})$ was heated under reflux for 4 h . After addition of $\mathrm{Fe}_{2}\left(\mathrm{CO}_{9}(5 \mathrm{~g}\right.$, cat. 15 mmol $)$, the heating was continued for 5 h . After solvent evaporation, the residue was taken with hexane (300 ml), and acidic alumina (type $\mathrm{I}, 100 \mathrm{~g}$) was added (decomposition of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$, the soln. becomes yellow). After filtration, the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ ml) and the filtrate evaporated. The residue was fractionated by column chromatography (Lobar Merk, size C, LiChroprep Si ot , hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2.1,15 \mathrm{~m} 1 / \mathrm{min}$), The following producis were obtained successively: $1.2 \mathrm{~g}(18 \% / 4)$ of $15,0.65 \mathrm{~g}(9 \%)$ of $16,0.68 \mathrm{~g}(10 \%)$ of $\mathbf{1 4}, 0.5 \mathrm{~g}(10 \%)$ of 13 , and finally $0.4 \mathrm{~g}(6 \%)$ of 12 .
anti, exo-Tricarbonyl/ ($1 \mathrm{R}, 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S})-\mathrm{C}, 2,3, \mathrm{C}-\eta-\left(3^{\prime}, 3^{\prime}\right.$-dimethy-2,3,5,6-tetramethylidenespirolbicyclo/2.2.1/-heptane-7.2'-oxiranel) /iron $\left.{ }^{3}\right)^{\text {b }}$) (12). Yellow crystals. M.p. 134° (dec. : hexane). UV (isooctane): 217 (17700), 245 (10450), 309 (2650; see Fig. 2), UV ($95 \% \mathrm{EtOH}$): 204 (22800), 217 (19100), 245 (11200), 309 (2630). IR (KBr): $3000,2040,1990$ 1960s, 1460, 1360, 1240, 1200, 1120, 960, 900. ${ }^{1} \mathrm{H} \cdot \mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.48,5.26(2 \mathrm{~s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 3.08(d, J=0.4, \mathrm{H} \cdots \mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)) ; 1.88\left(d d,{ }^{2} J=2.9,{ }^{4} J=0.4,2 \mathrm{H}, \mathrm{H}\right.$ trans to $\mathrm{C}(2), \mathrm{C}(3)$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ and $\left.\mathrm{CH}_{2}=\mathrm{C}(3)\right) ; 1.34(\mathrm{~s}, 2 \mathrm{Me}): 0.33\left(d,{ }^{2} J=2.9,2 \mathrm{H}, \mathrm{H}\right.$ cis to $\mathrm{C}(2), \mathrm{C}(3)$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ and $\left.\mathrm{CH}_{2}=\mathrm{C}(3)\right) .{ }^{12} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}\right): 213.8(1 \mathrm{C}, \mathrm{CO}) ; 209.5(2 \mathrm{C}, \mathrm{CO}) ; 145.8(s, \mathrm{C}(5), \mathrm{C}(6)) ; 108.8(s$, $\mathrm{C}(2), \mathrm{C}(3)) ; 106.1\left(1,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 84.4(s, \mathrm{C}(7)) ; 66.6\left(s, \mathrm{C}\left(3^{\prime}\right)\right) ; 52.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{II})=154\right.$, $\mathrm{C}(1), \mathrm{C}(4)) ; 33.0\left(t, J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(2), \mathrm{CH} \mathrm{I}_{2}=\mathrm{C}(3)\right) ; 21.8\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=126,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{eV}): 340(11$, M^{+}), $312(41), 284(66), 256(22), 226(30), 188(31), 170(20), 115(30), 84(22), 56(100)$. Anal calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FcO}_{4}$ (340.162): C $60.03, \mathrm{H} 4.74$; found: C 59.91 , H 4.68 .
syn, exo-TricurbonyI/($1 \mathrm{R}, 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S})-\mathrm{C}, 2,3, \mathrm{C}-\eta-\left(3^{\prime} .3^{\prime}\right.$-dimethy-2.3.5,6-tetramethylidenexpiro/bicyclo/2.2.1/-Iteptane-7,2'-oxirane /) /iron ${ }^{3}$) (13). Yellow crystals. M.p. 165° (dee; hexane), UV (isooctane): 217 (22 100), 247 (13300), 258 (10300), 302 (3600 ; see Fig. 2). UV (95% EtOH): 217 (23600), 247 (13800), 258 (10500), 302 (3700). IR (KBr): $3010,3000,2040,1980,1360,1260,1220,1165,1080,980,900.880 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.56$, $5.46\left(2 \mathrm{~s}, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 3.06\left(d,{ }^{4} \mathrm{~J}=0.4, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)\right): 1.88\left(d d,{ }^{2} \mathrm{~J}=2.8,{ }^{4} \mathrm{~J}=0.4, \mathrm{H}\right.$ trans to $\mathrm{C}(2), \mathrm{C}(3)$ of $\mathrm{CH} \mathrm{H}_{2}=\mathrm{C}(2)$ and $\left.\mathrm{CH}_{2}=\mathrm{C}(3)\right) ; 1.29(s, 2 \mathrm{Me}) ; 0.25\left(d,{ }^{2} J=2.8,2 \mathrm{H}, \mathrm{H}\right.$ cis to $\mathrm{C}(2), \mathrm{C}(3)$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ and $\left.\mathrm{ClH}_{2}=\mathrm{C}(3)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}\right): 215.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CO}) ; 208.9(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CO}) ; 144.6(\mathrm{~s}, \mathrm{C}(5), \mathrm{C}(6)) ; 107.0$ $(s, \mathrm{C}(2), \mathrm{C}(3)): 104.6\left(t, J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 83.4(\mathrm{~s}, \mathrm{C}(7)) ; 60.5\left(\mathrm{~s}, \mathrm{C}\left(3^{\prime}\right)\right) ; 53.0(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=154, \mathrm{C}(1), \mathrm{C}(4)\right) ; 32.6\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(2), \mathrm{CH}_{2}=\mathrm{C}(3)\right): 20.8\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=126,2 \mathrm{Me}\right) . \mathrm{MS}$ (70 eV): $340\left(3, M^{+`}\right), 312(21), 284(55), 256(83), 228(23), 226(56), 188(58), 115(38), 84(29), 56(100)$. Anal. cale. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FeO}_{4}(340.162)$: $\mathrm{C} 60.03, \mathrm{H} 4.74$; found: C $59.67, \mathrm{H} 4.71$.

 (hexane). UV (isooetane): $207(43100), 276(4700), 292(4800 ;$ see Fig. 2). IR (K Br): 3000, 2040, 1995, 1960, 1940, $1460,1440,1380,1200,1170,1120,970,950 .^{1} \mathrm{H}-\mathrm{NMR}\left(80 \mathrm{MH} 2, \mathrm{CDCl}_{3}\right): 3.39\left(d,{ }^{4} \mathrm{~J}=0.4, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)\right)$; $2.33\left(d,{ }^{2} J=2.9,2 \mathrm{H}, \mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2), \mathrm{CH}_{2}=\mathrm{C}(3)$ trans to $\mathrm{C}(2), \mathrm{C}(3)$ and $\left.\operatorname{syn} n^{3}\right)$ to the O -atom $) ; 2.0\left(d d,{ }^{2} J=2.9\right.$, ${ }^{4} J=0.4,2 \mathrm{H}, \mathrm{H}$ of $\left(\mathrm{H}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)\right.$ trans to $\mathrm{C}(5), \mathrm{C}(6)$ and anti $\left.{ }^{3}\right)$ to the O -atom $) ; 1.40(s, 2 \mathrm{Me}) ; 0.92,0.57$ $\left(2 d, I=3.2,4 \mathrm{H}, \mathrm{H}\right.$ of $4 \mathrm{CH}_{2}=\mathrm{C}$ cis to $\mathrm{C}(2),(\mathrm{Cl} 3)$ and $\left.\mathrm{C}(5), \mathrm{C}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}\right): 213.9(s$, $1 \mathrm{C}), 209.2(s, 2 \mathrm{C}): 115.8(s, \mathrm{C}(2), \mathrm{C}(3)) ; 112.9(s, \mathrm{C}(5), \mathrm{C}(6)) ; 101.2(s, \mathrm{C}(7)) ; 70.4\left(s, \mathrm{C}\left(3^{\prime}\right)\right): 50.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=154\right.$, $\mathrm{C}(1), \mathrm{C}(4)) ; 37.0\left(1,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(2), \mathrm{CH}_{2}=\mathrm{C}(3)\right) ; 33.7\left(1,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(5), C \mathrm{H}_{2}=\mathrm{C}(6)\right) ; 21.5$ $\left(q d,{ }^{1} J(\mathrm{C}, \mathrm{H})=126,{ }^{3} J(\mathrm{C}, \mathrm{H})=4,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{eV}): 480\left(8, \mathrm{M}^{+}\right), 452(21), 424(67), 396(16), 340(100), 312(94)$, 284 (25), 112 (47), 84 (34). Anal, calc. for $\mathrm{C}_{210} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{7}(480.04)$: C 50.04, H 3.36: found: C 50.03, H 3.35.
${ }^{\text {¹ }}$) For a better understanding of the names of 1216 coneerning the configurations, exo/endo and syn/anti") prefixes have been added.
 thylidenespiro/bicyclo/ 2.2 .1]heptane-7, 2^{\prime}-oxirane) /his (tricarbony/iron $\left.)^{3}\right)^{6}$) ($\mathbf{1 5}$). Yellow crystals M.p. 170° (hexanc). UV (isooctanc): 216 (sh, 34300), 222 (34700), 284 (4700). 328 (5815 : sce Fig. 2). IR (KBr): 3000, 2040, 1980. 1950. $1480,1430,1380,1200,1150,1110,1070,970,950$. ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MH} \angle, \mathrm{CDCl}_{3}\right): 3.06$ (br. s, $\mathrm{H}-\mathrm{CC}(1)$, $\mathrm{H}-\mathrm{C}(4)) ; 1.96 .1 .87\left(2 d d,{ }^{2} J=2.9,{ }^{4} J=0.4,4 \mathrm{H}\right) ; 1.29(s .2 \mathrm{Me}) ; 0.53,0.37\left(2 d,{ }^{2} J=2.9,4 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(90.55$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}\right): 215.0(s, 1 \mathrm{C}) ; 214.0(\mathrm{~s}, 2 \mathrm{C}) ; 209.4(\mathrm{~s}, \mathrm{I} \mathrm{C}) ; 208.7(\mathrm{~s}, 2 \mathrm{C}) ; 116.9,114.7(2 \mathrm{~s}, \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5)$, $\mathrm{C}(6)) ; 89.9(s, \mathrm{C}(7)) ; 65.6\left(\mathrm{~s}, \mathrm{C}\left(3^{\prime}\right)\right) ; 50.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=156, \mathrm{C}(1), \mathrm{C}(4)\right) ; 33.5,32.1\left(2 t .{ }^{1} /(\mathrm{C}, \mathrm{H})=160\right) ; 21.7(\mathrm{qd}$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=126,{ }^{3},(\mathrm{C}, \mathrm{H})=4,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{cV}): 480\left(10, \mathrm{M}^{+}\right), 452(4), 424(36), 368(22), 340(40), 312(100), 284$ (76), 256 (15), $188(21), 112(41)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{7}(480.04): \mathrm{C} 50.04, \mathrm{H} 3.36$; found: $\mathrm{C} 50.19, \mathrm{H} 3.38$.
syn, exo ${ }^{23}$-anti, cndo ${ }^{56}$-trans- $\mu-\int(1 \mathrm{R}, 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R})-\mathrm{C}, 2,3, \mathrm{C}-\eta$: C.5,6, C- $\eta-\left(3^{\prime}, 3^{\prime}\right.$-Dimethyl-2,3,5,6-tetra-methy/idenespire/bicyclo[2.2.1/heptanc-7, 2^{2}-axiranel)/bis (ificarhonyliron) $\left.{ }^{3}\right)^{\circ}$) (16). Yellow crystals. M.p. 155° (hexane). UV (isvoctane): 225 (36600), 276 (sh, 5700), 287 (sh, 5700; see Fig. 2). IR (KBr): 3010, 2990, 2050, 2040, $2000,1960,1360,1220,1150 .{ }^{4} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.33\left(d,{ }^{4} J=0.4, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)\right) ; 2.2\left(d,{ }^{2} J=2.9,2\right.$ H, H of $\mathrm{CH}_{2}=\mathrm{C}(2), \mathrm{CH}_{2}=\mathrm{C}(3)$ trans to $\mathrm{C}(2), \mathrm{C}(3)$ and $\left.s y n^{3}\right)$ to the O -atom); $1.94\left(d,{ }^{2} J=2.9,2 \mathrm{H}, \mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(5)$. $\mathrm{CH}_{2}=\mathrm{C}(6)$ trats of $\mathrm{C}(5), \mathrm{C}(6)$ and anti $\left.{ }^{3}\right)$ to the O -atom $) ; 0.71,0.42\left(2 d,{ }^{3} J \approx 3,4 \mathrm{H}, \mathrm{H}\right.$ of $4 \mathrm{CH}_{2}=\mathrm{C}$ cis to $\mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(5), \mathrm{C}(6))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 214.8(s, 1 \mathrm{C}) ; 208.8(s, 2 \mathrm{C}) ; 112.9,110.4(2 s, \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5)$, $\mathrm{C}(6)) ; 51.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=154, \mathrm{C}(1), \mathrm{C}(4)\right) ; 35.8,33.1\left(2 t,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=160,4 \mathrm{CH}_{2}=\mathrm{C}\right) ; 20.8\left(q d,{ }^{1} J(\mathrm{C}, \mathrm{H})=126\right.$, $\left.{ }^{3} J(\mathrm{C}, \mathrm{H})=4,2 \mathrm{Me}\right) . \mathrm{MS}(70 \mathrm{eV}): 480\left(10, M^{+\cdot}\right), 452(22), 396(51), 312(100), 284(50), 256(16), 188(16), 128$ (18), 56 (70). Anal. calc. For $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{O}_{7}$ (480.04): C 50.04 , H 3.36 ; found: C $50.01, \mathrm{H} 3.33$.

Crystal Structure of $\mathbf{1 6}$. A single crystal of 16 was obtained by slow recrystallization from hexane at 20°. Single-crystal diffraction intensities were collected on a Enraf-Nonius-CAD-4 autodiffractometer. Table I gives the crystallographic data and data-collection procedure [20]. Atomic scattering factors for ncutral $\mathrm{C}, \mathrm{O}, \mathrm{Fe}$, and $\mathrm{H}[21]$ and anomalous coefficients for Fe [22] were included in the structure-factor calculations. List of atomic parameters are given in Table 2. A list of anisotropic thermal displacement parameters (anisotropic per H -atoms) is given in Table 3. A perspective view of the molecular structure of $\mathbf{1 6}$ was prepared by the programm ORTEP [19] (Fig.3). A list of the observed and calculated structure-factor amplitude are available on request from G, C.

Fig. 3. Perspective view of the molecular structure of $\mathbf{1 6}$ (ORTEP program [19]). For reason of clarity, the H-atoms are not shown; the atom numbering does not correspond to the IUPAC numbering; atoms are reproduced with 50% thermal ellipsoids.

Table 1. Crystal Data of 16, Intensity Collection, and Refinement

Formula
Molecular mass
Crystal system
Space group
$a[\AA]$
$b[\AA]$
$\epsilon[\AA]$
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{Fe}_{2}$
480.03
monoclinic
$P 2_{1 / n}$
14.85(1)
8.753(1)
17.34(2)

Table I (cont.)

$\beta\left[{ }^{\circ}\right]$	115.56(8)
$V\left[\AA^{3}\right]$	2033(4)
Z	4
$d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.57(1)
$d_{\text {obs }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$1.58(1)^{\text {a }}$)
F_{000}	976
Radiation	Mo K_{α} (graphite monochromator)
$\lambda[\AA$]	0.71069
$\mu\left[\mathrm{cm}^{-1}\right]$	14.6
Crystal volume	$1.96 \cdot 10^{-3} \mathrm{~cm}^{-3}$
Min/max transmission	0.66/0.78
Scan method	$20-0$
Profile analysis	Lehmann-Larsen (Schwarzenhach) [20]
Scan width	$1.20^{\circ}+0.34 \operatorname{tg} \theta$
Scan speed	variable with intensity
$(\sin \theta / \lambda)_{\max }$	0.60
Collected intensities	$\pm h+k \pm l$
Scattering factors	neutral atoms (Cromer and Mann [21])
Anomalous dispersion	Fe (Cromer and Liberman [22])
Observations	3579 , of which 972 smaller than 3σ
Weights	$1 /\left(\sigma^{2}+0.01 F^{2}\right)$
Lattice constants	least-squares of 10 accurately centered reflections with $19^{\circ}<2 \theta<24^{\circ}$
Thermal parameters	anisotropic for non-H-atoms, isotropic for H -atoms (H -atoms have been omitted on $\mathrm{C}(9)$ and $\mathrm{C}(10)^{\text {b }}$)
Agreement factor	$R=0.039, R_{\text {w }}=0.064$
Error of an observation of unit weight	0.64
Observations per parameter	11.8
Largest shift error of refinement	0.04
Largest peak on a final ΔF-Fourier	$0.59 \mathrm{e} / \AA^{3}$
Refinement constants	soft restrictions on $\mathrm{C}-\mathrm{H}$ bond distance ($1 \AA$)
Resolution method	MULTAN [23] and Fourier
Refinement method	weighted block-diagonal least-squares (2 blocks)
Minimized quantity	$\begin{aligned} & \Sigma_{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)+\Sigma w^{\prime}\left(d_{\mathrm{p}}-d_{\mathrm{c}}\right)^{2}\left(d_{\mathrm{p}}:\right. \text { prescribed distance; } \\ & \left.d_{\mathrm{c}}: \text { calculated distance } ; w^{\prime}=1 / \sigma^{2}=100\right) \end{aligned}$

${ }^{\text {a }}$) By flotation in ZnI_{2} solutions. ${ }^{\text {b }}$) See Fig. 3 for atom numbering.

Table 2. List of Atomic Parameters and Equivalent Temperature Factors for 16

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Fe}(1)$	$0.28665(3)$	$0.44463(6)$	$0.41500(3)$	$0.0391(2)$
$\mathrm{Fe}(2)$	$-0.04445(4)$	$0.18308(6)$	$0.36865(3)$	$0.0419(2)$
$\mathrm{O}(2)$	$0.2953(3)$	$0.7796(4)$	$0.4169(3)$	$0.085(2)$
$\mathrm{O}(3)$	$0.4747(2)$	$0.3688(5)$	$0.5601(2)$	$0.079(2)$
$\mathrm{O}(4)$	$0.3418(3)$	$0.4506(4)$	$0.2713(2)$	$0.069(2)$
$\mathrm{O}(5)$	$0.0958(3)$	$-0.0729(4)$	$0.4036(2)$	$0.072(2)$
$\mathrm{O}(6)$	$0.0503(3)$	$0.2759(4)$	$0.5483(2)$	$0.073(2)$
$\mathrm{O}(7)$	$-0.2140(3)$	$0.0170(5)$	$0.3719(3)$	$0.094(2)$
$\mathrm{C}(15)$	$0.2903(3)$	$0.6494(5)$	$0.4157(3)$	$0.051(2)$
$\mathrm{C}(16)$	$0.4025(3)$	$0.4006(5)$	$0.5024(3)$	$0.053(2)$
$\mathrm{C}(17)$	$0.3187(3)$	$0.4459(4)$	$0.3265(3)$	$0.048(2)$
$\mathrm{C}(18)$	$0.0424(3)$	$0.0284(5)$	$0.3887(3)$	$0.050(2)$
$\mathrm{C}(19)$	$0.0141(3)$	$0.2416(5)$	$0.4775(3)$	$0.050(2)$
$\mathrm{C}(20)$	$-0.1491(3)$	$0.0815(6)$	$0.3699(3)$	$0.061(2)$

Table 2 (cont.)

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{C}(1)$	$0.0789(3)$	$0.3203(4)$	$0.2663(2)$	$0.037(1)$
$\mathrm{C}(2)$	$0.1618(2)$	$0.3073(4)$	$0.3576(2)$	$0.035(1)$
$\mathrm{C}(3)$	$0.1434(3)$	$0.4234(4)$	$0.4059(2)$	$0.037(1)$
$\mathrm{C}(4)$	$0.0513(3)$	$0.5087(4)$	$0.3463(2)$	$0.039(1)$
$\mathrm{C}(5)$	$-0.0378(3)$	$0.3967(4)$	$0.3185(2)$	$0.039(1)$
$\mathrm{C}(6)$	$-0.0202(2)$	$0.2807(4)$	$0.2696(2)$	$0.038(1)$
$\mathrm{C}(7)$	$0.0615(2)$	$0.4958(4)$	$0.2608(2)$	$0.036(1)$
$\mathrm{C}(8)$	$0.0105(3)$	$0.5881(4)$	$0.1842(2)$	$0.046(1)$
$\mathrm{C} 9)$	$-0.0481(3)$	$0.7276(5)$	$0.1852(3)$	$0.065(2)$
$\mathrm{C}(10)$	$-0.0150(4)$	$0.5215(6)$	$0.0972(3)$	$0.068(2)$
$\mathrm{C}(11)$	$0.2459(3)$	$0.2099(4)$	$0.3972(3)$	$0.047(2)$
$\mathrm{C}(12)$	$0.2110(3)$	$0.4420(5)$	$0.4930(2)$	$0.051(2)$
$\mathrm{C}(13)$	$-0.0907(3)$	$0.1610(5)$	$0.2348(3)$	$0.051(2)$
$\mathrm{C}(14)$	$-0.1250(3)$	$0.3912(5)$	$0.3327(3)$	$0.053(2)$
$\mathrm{O}(1)$	$0.1190(2)$	$0.5995(3)$	$0.2386(2)$	$0.045(1)$
H(1)	$0.098(3)$	$0.279(4)$	$0.222(2)$	$0.039(5)$
H(2)	$0.045(3)$	$0.611(2)$	$0.368(2)$	$0.033(5)$
H(3)	$0.265(3)$	$0.144(4)$	$0.359(2)$	$0.053(6)$
H(4)	$0.262(3)$	$0.173(5)$	$0.456(1)$	$0.057(6)$
H(5)	$0.189(3)$	$0.539(3)$	$0.510(3)$	$0.066(7)$
H(6)	$0.230(3)$	$0.340(3)$	$0.522(3)$	$0.074(7)$
H(7)	$-0.073(3)$	$0.070(3)$	$0.209(2)$	$0.045(6)$
H(8)	$-0.1645(7)$	$0.177(5)$	$0.056(6)$	
H(9)	$-0.188(2)$	$0.388(5)$	$0.05(3)$	$0.062(6)$
H(10)	$-0.117(3)$	$0.452(4)$	$0.379(1)$	

Table 3. Anisotropic Thermal Displacement Parameters (anisotropic per H-atoms)

Atom	$U_{11}($ or U)	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Fe}(1)$	$0.0362(3)$	$0.0411(4)$	$0.0390(3)$	$-0.0042(2)$	$0.0154(2)$	$-0.0004(2)$
$\mathrm{Fe}(2)$	$0.0419(3)$	$0.0400(3)$	$0.0444(3)$	$-0.0082(2)$	$0.0191(2)$	$-0.0039(2)$
$\mathrm{O}(2)$	$0.074(2)$	$0.047(2)$	$0.121(3)$	$-0.010(2)$	$0.032(2)$	$-0.018(2)$
$\mathrm{O}(3)$	$0.051(2)$	$0.094(3)$	$0.068(2)$	$-0.011(2)$	$0.002(2)$	$0.028(2)$
$\mathrm{O}(4)$	$0.091(2)$	$0.071(2)$	$0.065(2)$	$0.012(2)$	$0.053(2)$	$0.009(2)$
$\mathrm{O}(5)$	$0.075(2)$	$0.054(2)$	$0.096(2)$	$0.011(2)$	$0.045(2)$	$0.011(2)$
$\mathrm{O}(6)$	$0.091(2)$	$0.084(2)$	$0.052(2)$	$-0.029(2)$	$0.041(2)$	$-0.020(2)$
$\mathrm{O}(7)$	$0.061(2)$	$0.110(3)$	$0.109(3)$	$-0.034(2)$	$0.036(2)$	$0.005(3)$
$\mathrm{C}(15)$	$0.040(2)$	$0.053(3)$	$0.053(2)$	$-0.004(2)$	$0.014(2)$	$-0.009(2)$
$\mathrm{C}(16)$	$0.043(2)$	$0.061(3)$	$0.051(2)$	$-0.011(2)$	$0.019(2)$	$0.006(2)$
$\mathrm{C}(17)$	$0.047(2)$	$0.041(2)$	$0.054(2)$	$0.001(2)$	$0.021(2)$	$0.004(2)$
$\mathrm{C}(18)$	$0.055(2)$	$0.046(2)$	$0.053(2)$	$-0.011(2)$	$0.028(2)$	$0.001(2)$
$\mathrm{C}(19)$	$0.056(2)$	$0.050(2)$	$0.051(2)$	$-0.011(2)$	$0.030(2)$	$-0.004(2)$
$\mathrm{C}(20)$	$0.049(2)$	$0.065(3)$	$0.068(3)$	$-0.011(2)$	$0.023(2)$	$0.003(2)$
$\mathrm{C}(1)$	$0.044(2)$	$0.035(2)$	$0.032(2)$	$0.000(1)$	$0.017(1)$	$-0.004(1)$
$\mathrm{C}(2)$	$0.036(2)$	$0.031(2)$	$0.037(2)$	$-0.005(1)$	$0.015(1)$	$-0.001(1)$
$\mathrm{C}(3)$	$0.036(2)$	$0.042(2)$	$0.035(2)$	$-0.012(1)$	$0.017(1)$	$-0.005(1)$
$\mathrm{C}(4)$	$0.047(2)$	$0.033(2)$	$0.043(2)$	$-0.004(2)$	$0.025(2)$	$-0.007(1)$
$\mathrm{C}(5)$	$0.039(2)$	$0.039(2)$	$0.039(2)$	$-0.004(1)$	$0.016(1)$	$-0.003(1)$
$\mathrm{C}(6)$	$0.038(2)$	$0.035(2)$	$0.035(2)$	$-0.001(1)$	$0.010(1)$	$-0.003(1)$
$\mathrm{C}(7)$	$0.041(2)$	$0.032(2)$	$0.036(2)$	$-0.002(1)$	$0.018(1)$	$-0.003(1)$
$\mathrm{C}(8)$	$0.051(2)$	$0.035(2)$	$0.044(2)$	$0.000(2)$	$0.015(2)$	$0.000(2)$
$\mathrm{C}(9)$	$0.057(2)$	$0.040(2)$	$0.083(3)$	$0.015(2)$	$0.017(2)$	$0.010(2)$

Table ${ }^{3}$ (cont.)

Atom	$U_{11}($ or $U)$	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{C}(10)$	$0.094(3)$	$0.066(3)$	$0.035(2)$	$0.003(3)$	$0.020(2)$	$0.004(2)$
$\mathrm{C}(11)$	$0.047(2)$	$0.039(2)$	$0.053(2)$	$-0.001(2)$	$0.018(2)$	$0.000(2)$
$\mathrm{C}(12)$	$0.048(2)$	$0.069(3)$	$0.041(2)$	$0.012(2)$	$0.023(2)$	$-0.009(2)$
$\mathrm{C}(13)$	$0.057(2)$	$0.045(2)$	$0.044(2)$	$0.011(2)$	$0.015(2)$	$-0.009(2)$
$\mathrm{C}(14)$	$0.044(2)$	$0.053(2)$	$0.064(3)$	$0.001(2)$	$0.025(2)$	$0.001(2)$
$\mathrm{O}(1)$	$0.048(1)$	$0.040(1)$	$0.045(1)$	$0.003(1)$	$0.020(1)$	$0.007(1)$
$\mathrm{H}(1)$	$0.039(5)$					
$\mathrm{H}(2)$	$0.033(5)$					
$\mathrm{H}(3)$	$0.053(6)$					
$\mathrm{H}(4)$	$0.057(6)$					
$\mathrm{H}(5)$	$0.066(7)$					
$\mathrm{H}(6)$	$0.074(7)$					
$\mathrm{H}(7)$	$0.045(6)$					
$\mathrm{H}(8)$	$0.056(6)$					
$\mathrm{H}(9)$	$0.056(6)$					
$\mathrm{H}(10)$	$0.062(6)$					

REFERFNCES

[1] G. Burnier, L. Schwager, P. Vogel, Heht. Chim. Acta 1986, 69.1310.
[2] P. Vogel, in 'Stereochemistry and Reactivity of Systems Containing π-Electrons'. Ed. W.H. Watson, Verlag Chemie International, Deerficld Beach, Florida, 1983, p. 147..195.
[3] J.-L. Métral, J. Lauterwein, P. Vogei, Meh. ('him. Acta 1986, 69, 1287.
[4] R. Gabioud, P. Vogel, Tetrahcdron 1980, 36, 149.
[5] L. de Picciotto, P.-A. Carrupt, P. Vogel, J. Org. Chem. 1982, 47, 3796.
[6] H. J. Baker, Chen. Weekh. 1936, 36, 214; P. S. Bailey, A. G. Lane, J. Am. Chem. Soc. 1967, 89, 4473.
[7] J.-P. Hagenbuch, P. Vogel, Chimia 1977, 31, 136; A Chollet, J.-P. Hagenbuch, P. Vogel, Helv. Chim. Acta 1979, 62. 511.
[8] O. Pilet, P. Vogel, Helv. Chim, Acta 1981, 64, 2563.
[9] A. A. Pinkerton, P.-A. Carrupt, P. Vogel, T. Boschi, N. II. Thuy, R. Roulet, Inorg. Chim. Acta I978, 28, 123; Ph. Vioget, Dissertation, University of Lausanne, 1983.
[10] E. Meier, A. A. Pinkerton, R. Roulet, P. Vogel, D. Schwarzenbach, J. Organomet. Chem. 1981, $220,341$.
[1I] U. Steiner, H.-J. Hansen, K. Bachmann, W. von Philipsborn, Hete. Chim. Acta 1977, 60, 643.
[12] C. A. Barras, R. Roulct, P.-A. Carrupt, F. Berchicr, P. Vogel, Helv. Chim. Acta 1984, 67. 986.
[13] J. Ioset, R. Roulet, Helv. Chim. Acta 1985, $68,236$.
[14] A. A. Pinkerton, G. Chapuis, P. Vogel, U. Hänisch. P. Narbel, T. Boschi, R. Roulet, Inorg. Chim. Acta 1979, 35, 197.
[15] P. Bischofberger, H.-J. Hansen, Helv. Chim. Acia 1982, 65, 721.
[16] Ph. Narbel, T. Boschi, R. Routct. P. Vogel, A. A. Pinkerton. D. Schwarzenbach, Inorg. (him. Acta 1979, 36, 161.
[17] R. Gabioud, P. Vogel, Hehl Chim. Acta 1986, 69, 865: R. Gabioud, P. Vogel, A. A. Pinkerton, D. Schwarzenbach, ibid. 1986, 69, 271.
[18] M. Turin, J. Wenger, L. Helm, Bibliothèque de programmes de l'institut de chimie minérale et analytique, Université de Lausanne, 1981.
[19] C. K. Johnson, ORNL - 3794, Oak Ridge National Laboratory, 1971.
[20] D. Schwarzenbach, Abstr. Fourth Eur. Meeting Cryst. in Oxford, 1977, p.I 20.
[21] D. T. Cromer, J. B. Mann, Acta Crystallogr., Sert. A 1968, 24, 321.
[22] D.T. Cromer, D. Liberman, J. Chem. Phys. 1970, 53. 1891.
[23] P. Main, S. J. Fiske, S.E. Hull, J.-P. Declerq, G. Germain, M. M. Woolfson, MULTAN, A System of Computer Programs for the Automatic Solution of Crystal Structure, 1980.

[^0]: ${ }^{1}$) Interaction between non-conjugated chromophores, Part 27. Part 26, see [1].
 ${ }^{2}$) Part of the planned Ph.D. thesis of A. Rubello, Université de Lausanne.

[^1]: ${ }^{3}$) The configurational prefixes $s y n$ and anti are used to indicate that the Fe-atom is on the same and opposite side, respectively, as the O -atom with respect to the plane defined by the two bridgeheads and the bridge atom.
 ${ }^{4}$) Coordinations of 2,3-dimethylidene-7-oxabicyclo[2.2.1]heptane with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in $\mathrm{MeOH}[9]$ and of 2,3,5,6-te-tramethylidene-7-oxabicyclo[2.2.1]heptane with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in $\mathrm{Et}_{2} \mathrm{O}$ /pentane were also exo-face-selective [10]. In the cases of 2,3-dimethylidenebicyclo[2.2.1]heptane, 5,6-dimethylidenebicyclo[2.2.1]hept-2-ene [11] [12], and 7,7-dimethoxy-2,3-dimcthylidenebicyclo[2.2.1]heptane [13], both faces of the diene moieties were complexed with similar rates with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in MeOH .

[^2]: ${ }^{5}$) For circular dichroism of tricarbonyliron mono- and dicomplexes of optically pure 2,3,5,6-tetramethylidenebicyclo[2.2.2]octane derivatives, see [17].

